The Association of miR-let7b and miR-548 with PTEN in Prostate Cancer

Mojtaba Saffari1,2, Sayyed Mohammad Hossein Ghaderian*, Mir Davood Omrani4, Mandana Afsharpad1, Kimia Shankaei4, Niusha Samadaian1

Purpose: This study aims to investigate the expression level of mir-let7b-3p and mir-548, which are involved in PTEN expression in tissue samples of prostate cancer patients versus benign prostate hyperplasia (BPH) and normal adjacent tissue.

Materials and Methods: Prostate cancer tissues were obtained from patients after receiving informed consent. Total RNA extraction and cDNA synthesis were performed for determining gene expression.

Results: Ten patients were determined to have high Gleason scores (> 7), 36 and seven samples had intermediate Gleason scores (7≥) and BPH, respectively, and 40 samples were derived from normal adjacent tissue. Downregulation of mir-let7b and upregulation of mir-548 expression significantly correlated with high-risk Gleason scores.

Conclusion: The present study showed that miR-let7b and/or mir-548 can be considered as potential targets in prostate cancer therapy.

Keywords: Prostate cancer; mir-let7b; mir-548; PTEN

INTRODUCTION

One of the most frequently diagnosed malignancies in men is prostate. Various factors including environmental elements such as lifestyle, race and genetics alterations and epigenetic mechanisms influence prostate cancer and its progression toward advanced malignancy1,2. The discovery of genetic or epigenic associations with prostate cancer in the post-genome era has improved diagnosis and management of therapy 3. PTEN tumor suppressor gene plays a key role in PI3K/AKT pathway regulation, which is the most prominent signaling pathway that regulates some cellular processes such as cell cycle, survival, metabolism, motility, genomic instability and angiogenesis, and frequent changes in prostate cancer. It was shown that the PTEN expression level decreased in 4% of primary prostate cancer and more than 40% in metastatic prostate cancer 4. For this reason, the inhibition of PTEN suppressor can be used as a potential target therapy for metastatic prostate cancer. The early determination of prostate cancer is necessary for an effective treatment and to increase survival time. At present, the most common tools for the diagnosis of prostate cancer is serum prostate specific antigen (PSA) level 5. Sensitivity and specificity of a PSA cutoff of 4 ng/ml are about 50% and 90%, respectively. This limitation leads to low detection rate of prostate cancer in range of 4–10 ng/ml PSA level (called gray zone), and therefore, it is a disadvantage of PSA screening as a biomarker. Although PSA has decreased the mortality rate of prostate cancer, it can lead to over-diagnosis or overtreatment 6,7. MicroRNAs (miRNAs), on average 22 nucleotides long, are a class of small noncoding RNAs and play key roles in the gene regulatory processes 8. First, they are transcribed in the nucleus by RNA polymerase II called pri-miRNA, and then they are processed into pre-miRNA by Drosha and transported to the cytoplasm to be converted to 19-25 nucleotides double strand miRNA by Dicer. MicroRNAs are transported into the RNA-induced silencing complex (RISC) that bind to 3UTR of the target genes and negatively regulate translation 9. The alteration of miRNA expression leads to changes in many fundamental cellular and biological processes such as differentiation, proliferation, migration, cell cycle and apoptosis that cause disease and cancer. Chromosomal rearrangement such as deletion, amplification, mutation, and methylation of promoter alter miRNA expression levels 10. Increasing miRNA expression profiling improves diagnosis, staging, progression, prognosis, and response to treatment in human cancers. Therefore, miRNAs can be used as a new oncomir or tumor suppressor mir, and new biomarkers for the diagnosis, prognosis and prediction of treatment.

1Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
3Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
4Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
5Cancer Control Research Center, Cancer Control Foundation, Iran, Iran University of Medical Sciences, Tehran, Iran.
6Department of Biology, Science and research branch, Islamic Azad University, Tehran, Iran.
7Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
8Department of Biochemistry & Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran Pasdaran, 9th Boosan Ave. Tehran, Iran.
Tel: +982122779054 Fax: +982122567282 E-mail: sghaderian@sbmu.ac.ir.
Received May 2018 & Accepted September 2018
response. It has been demonstrated that miRNAs are very stable against heat, pH alteration, freeze-thaw and ribonuclease. For this reason, miRNA levels are studied in different types of patient samples. Based on information from databases/literature, which show the potential miRNAs that influence the PTEN target gene, we selected mir-let7b-3p and mir-548 for quantification by real-time polymerase chain reactions (RT-PCRs) and determined the PTEN expression levels between tumor tissues and normal tissues. In the present study, we showed dysregulation of mir-let7b and mir-548 expression levels in prostate cancer tissues.

MATERIALS & METHODS

Target prediction for microRNA
Two online computational algorithms, TargetScan (www.targetscan.org) and Diana Tools (diana.imis.athena-innovation.gr), were used for the bioinformatics prediction of miRNA binding sites.

Ethics Statement
All tests were carried out in conformity with relevant guidelines. Written informed consent was obtained from each contributor prior to tumor sample collection. All the clinical samples were obtained from Imam Khomeini Hospital of Tehran University of Medical Sciences. This study was approved by the Ethical Review Committee of Shahid Beheshti University of Medical Sciences.

Sample collection
In this study, all the samples of newly diagnosed prostate cancer cases were collected from Imam Khomeini Hospital between 2015 and 2016. After informed consent, the patients for the study were selected as per the inclusion criteria: age above 40 years, high PSA, histopathological findings of the needle biopsy specimens confirmed prostate cancer or BPH, and no chemotherapy treatments were given before surgery. The exclusion criteria were: age 40 years or below, normal PSA, and frequent urination without prostate cancer symptom. Then a pathologist distinguished tumor tissue from adjacent healthy tissue as normal sample according to the pathology results of previous needle biopsy.

RNA extraction and cDNA synthesis
Total RNA extraction from the tissue samples was done with Trizol (Invitrogen Carlsbad, CA) in line with the manufacturer’s protocol. The quantity of RNA samples was assessed spectrophotometrically by using NanoDrop ND-2000 (Thermo Fisher Scientific). The Mir-Q method as described by Sharbati-Tehrani11 was used for miR-let7b and mir-548 cDNA synthesis according to sequence-specific primers (Table 1).

Reference gene validation analysis
To validate housekeeping genes (HKGs) and to choose the most stable and reliable ones, nine of the most frequently used HKGs as internal control in RT-qPCR including SDHA, TBP, RPS13, UBC, ACTB, HSP-90AB1, PGM1, HPRT1, GAPDH named as 1, 2, 3, 4, 5, 6, 7, 8, and 9 respectively, were studied by considering their functional characteristics as well. A total number of six prostate tissue samples—three prostate carcinomas and three BPH—were included in this study. The qPCR of all the samples was carried out in triplicates, in a total volume of 20 µL containing 1X SYBR®Premix Ex Taq™II (TliRNaseH Plus) (TaKaRa), 5 µM of each sense and anti-sense primer (Table 2), plus 1µL of cDNA template. PCR reaction was performed on the Rotor-Gene Q 5plex HRM System (Qiagen) under 30 sec enzyme activation at 95ºC, followed by 40 cycles of

| Table 1. Oligonucleotide sequences were used to cDNA synthesis and amplification of miRNAs. |
|------------------|----------------------------------|
| Oligonucleotide name | Sequence |
| RT6-miRlet-7b | TGTCAAGCGAACCGTATTCAACGAGTGAGGAC |
| RT6-miR-548 | TGTCAAGCGAACCGTATTCAACGAGTGAGGAC |
| short-miRlet-7b-rev| CGTCAGATGCAGCCGGATACAGCCGGGAGTAC |
| short-miR-548-rev | CGTCAGATGCAGCCGGATACAGCCGGGAGTAC |
| MP-fw | TGTCAAGCGAACCGTATTCAACGAGTGAGGAC |
| MP-rev | CGTCAGATGCAGCCGGATACAGCCGGGAGTAC |

| Table 2. Gene symbol, primer sequence and amplicon length of selected candidate references genes |
|------------------|------------------|------------------|
| Gene symbol | Primer sequence (5´→3´) | Amplicon length (bp) |
| SDHA | F:GCACACGGAGAACCGAGG | 202 |
| TBP | R:CGCTTGGTAAACACAGTGC | 140 |
| UBC | F:CGGCTGAGCGACGAGTATAT | 125 |
| HPR1 | R:GATCTGTCATTGGAAGAGCC | 131 |
| RPS13 | F:CGTGATCGCTGATCGGTTAGT | 187 |
| HSP90AB1 | R:GCGTGAATACGGCTGGTTTACTTAC | 80 |
| PGM1 | F:AGCTTCTGAGAGACGGCA | 120 |
| ACTB | R:GCGTGAATACGGCTGGTTTACTTAC | 174 |
| GAPDH | F:GAAAGGGTGACGGGAGTCA | 109 |
| PTEN | R:ATTGAAAGGGTGACGGGAGTCA | 73 |
95°C for 5 sec, 58°C for 15 sec, and 72°C for 20 sec. We used geNorm (Vandesompele et al., 2002), NormFinder (Andersen et al., 2004), and BestKeeper (Pfaffl et al., 2004) statistical algorithms to evaluate the stability of each candidate HKG. The cycle threshold (Ct) average values of each sample’s triplicates were inputted directly into BestKeeper software. For NormFinder, the average Ct of each sample was transformed to the relative quantities linear row data, using the $Q = 2^{-Ct}$ Equation (Livak and Schmittgen, 2001), while the normalized Ct values calculated via the $Q = E \times \left(\text{minCt} - \text{sampleCt} \right)$ Equation (Q = normalized Ct value for a given gene in the current specimen, E = PCR amplification efficiency (ranging from 1 to 2 with 100% = 2), minCt = minimum Ct value for the gene among all specimens and sampleCt = the Ct value of the gene for the current specimen) were used as the input data for the geNorm program.

Quantitative Real-Time PCR

The quantitative assay of mature miRNAs was performed by SYBR Premix Ex Taq II (Tli RNaseH Plus) (Takara, Japan) by using the miR-Q method and done in the Rotor-Gene Q 5plex HRM System (Qiagene). Additionally, the expression level of PTEN was determined by using specific primers, as shown in Table 3. The reaction mixtures were incubated at 95°C for 30 Sec, followed by 40 cycles at 95°C for 5 Sec, and at 60°C for 30 Sec. The expression of miRNA from each sample was normalized by using the $2^{-\Delta\Delta Ct}$ method relative to 5S rRNA. $\Delta\Delta Ct$ was then computed by subtracting the ΔCt of normal tissue from the ΔCt of prostate cancer. The change in gene expression was calculated by using Equation 2–$\Delta\Delta Ct$ 12.

Statistical analysis

Data were presented as means ± SEM and evaluated by the t-test, one way or two way analysis of variance (ANOVA) followed by the Tukey test (SPSS 24 and GraphPad prism 7.0 Software Inc., La Jolla, CA, USA). A P-value <0.05 was considered to be statistically significant. Each point or column represents the mean ± SEM (n = 4–5) ($P < 0.05$).

RESULTS

Sample collection

All the samples were divided into four groups: Gleason score >7 (10 samples), Gleason score ≤7 (36 samples), BPH (7 samples) and non-cancerous (40 samples). The characteristics of the patients are listed in Table 3.

mir-let7b and mir-548 have predictive potential binding sites in the 3'UTR of human PTEN

According to bioinformatics tools (such as DIANA tools and TargetScan) and analysis, we found that two putative binding sites for mir-let7b and mir-548 are expressed in the 3'UTR of human PTEN. (Figure 1). The association of miR-let 7b and miR-548 with PTEN in prostate cancer-Saffari et al. (Urological Oncology 269)

<table>
<thead>
<tr>
<th>Table 3. Clinical Characteristics of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
</tr>
<tr>
<td>Gleason Score</td>
</tr>
<tr>
<td>sample</td>
</tr>
<tr>
<td>Age(min-max)</td>
</tr>
<tr>
<td>median</td>
</tr>
<tr>
<td>mean</td>
</tr>
<tr>
<td>SD</td>
</tr>
</tbody>
</table>

Figure 1. PTEN has two predictive banding sites for miR-548 and mir-let7b. A) Sequences of miR-548 and its putative binding sites in 3'UTR of PTEN. B) Sequences of miR-let7b and its putative binding sites in 3'UTR of PTEN.

Figure 2. Schematic picture of mir-Q design. First, cDNA is synthesized by a miRNA-specific oligonucleotide that has 5' overhang (RT6-miR-x) and six complementary bases (red). Then, a single strand cDNA is converted to a double strand by a specific oligonucleotide with 5' overhang (short-miR-x-rev). Finally, amplification is performed by using two terminal universal primers (MP-fw &MP-rev) (13).
was used for miR-let7b and mir-548 cDNA synthesis according to the sequence-specific adaptor and primers (Table 1 and Figure 2). This method is based on the SYBR green assay.

Expression stability of candidate HKGs

Based on the M-value calculated by geNorm, all the studied HKGs revealed values lower than the cutoff value of 1.5, suggesting that all of them could be reliably used as the reference gene in the qPCR analysis of prostate tissues (Figure 3). The stability ranking of the nine studied HKGs from the most stable to the least stable based on geNorm M-value were 5, 6, 8, 1, 2, 9, 3, and 7, respectively (Figure 3). The normalization factor calculated via pairwise variation values between two sequential normalization ($V_{n/n+1}$) by taking 0.15 as a cut-off value, we suggested using two genes data for more reliable qPCR normalization (Figure 4). According to NormFinder stability values, the HKGs’ ranking of stability from the most stable expressed to the least stable were 5, 8, 4, 3, and 7, respectively (Figure 3). 4 and 9 also exhibited the best combination of two genes across all the samples, with a stability value of 0.003, suggesting more stability. Considering Pearson correlations, reported as the BestKeeper correlation coefficient by BestKeeper algorithm, stability ranking order of studied genes were quite in concordance with those resulted, using geNorm and NormFinder, by 5 as the most stable followed by 8, 6, 1, 2, 9, 3, 4, and 7 respectively (Figure 3). Finally, the expression of ACTB was used to normalize the qPCR reactions, as it was indicated to be the most stable HKG among the studied candidate HKGs by BestKeeper, geNorm, and NormFinder.

Down-regulation of let-7b expression correlated with increasing Gleason scores

Following qRT-PCR analyses, it was revealed that miR-let7b was significantly decreased in the Gleason>7 group versus the non-cancerous group. Although the expression of miR-let7b reduced in Gleason ≤7 patients, the data was not statistically significant. (*p < 0.05) (Figure 5).

Over-expression of mir-548 in prostate cancer tissues correlated with increasing Gleason scores

The expression levels of mir-548c in all the four groups were performed quantitatively by qRT-PCR. As shown in Figure 6, the amount of mir-548 expression level in the cancerous sample increased in high grade of prostate cancer in comparison with BPH and normal tissues as non-cancerous tissues (*p < 0.05).

DISCUSSION

The dysregulation of various miRNAs expressions are seen in prostate cancer patients, and therefore, determining the most important miRNAs and their associated pathways is very important. In this study, we decided to evaluate the expression level of mir-548c-3p in cancer...
The expression levels of miR-548 in prostate cancer demonstrated that INPP4B expression increases in various cancers, although it has been shown that the expression levels of PTEN, INPP4B and miR-let7b are downregulated in prostate cancer and this is why they may repress the level of PTEN. Additionally, previous studies have reported that the expression levels of PTEN, INPP4B and miR-let7b are downregulated in prostate cancer, and therefore, it seems that overexpression of miR-548 expression level in prostate tumor tissues as compared to normal tissues adjacent.

CONCLUSIONS
This study showed that there is a difference in the expression of miR-548 in tumor and normal tissues and over expression of miR-548 is seen in prostate tumor tissues. We suggest that when miR-548c-3p increases in prostate cancer, it may repress the level of PTEN expression. Additionally, previous studies have reported that the expression levels of PTEN, INPP4B and PHLP are downregulated in prostate cancer and this is why they can be used as potential targets for cancer treatment.

ACKNOWLEDGMENTS
We acknowledge the support of the Urogenital Stem Cell Research Center (UGSRC), Shahid Beheshti University of Medical Sciences. Assistance by Dr. Hamid Ghaedi is gratefully acknowledged.
REFERENCES

31. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell