Donor Specific Antibodies Median Fluorescence Intensity Levels Are the Best Indicator for Monitoring Desensitization Treatment in Kidney Transplant

Francisco Boix, Santiago Llorente, Anna Mrowiec, Jorge Eguía, Ruth López-Hernández, Maria Victoria Bernardo, María Rosa Moya-Quiles, José A. Campillo, Alfredo Minguela, Luisa Jimeno, María R. Álvarez-López, Manuel Muro

Corresponding Author: Manuel Muro, PhD
Immunology Service, University Hospital "Virgen Arrixaca", Murcia 30120, Spain.
Tel: +34 968 369599 Fax: +34 968 349578 Email: manuel.muro@carm.es
Received December 2012 Accepted December 2013

Keywords: kidney transplantation; predictive value of tests; HLA antigens; histocompatibility testing; isoantibodies; fluorescence.

INTRODUCTION

Donor-specific human leukocyte antigen (HLA) antibodies (DSA) are increasingly recognized as a risk factor for kidney transplant graft failure. Nowadays, new serum screening methods have greatly enhanced the detection and specificity analysis of anti-HLA class II antibodies in sensitized patients. Panel-reactive antibodies (PRA) rate has historically been performed by complement-dependent cytotoxicity (CDC) method. In this respect, many histocompatibility laboratories have changed PRA for calculated reaction frequency (CRF) and implemented Single Antigens Beads (SAB) analysis. Additionally, different protocols that use B lymphocyte-depleting molecules (anti-CD20), intravenous immunoglobulin (IVIG) and plasmapheresis (PP) have also been developed.

This work reports a kidney transplant case of an antibody-mediated rejection (AMR) that has been treated with a desensitization protocol (plasmapheresis/IVIG) and anti-CD20. Luminex-based antibody detection results (mean fluorescence intensity; MFI) were consistent with therapy effectiveness, whereas luminex PRA/CRF outcomes were not informative.

CASE REPORT

A 69-year-old Caucasian woman was transplanted in our hospital with a kidney from an age-matched deceased donor (71 years old). The transplant was performed with total HLA-A, -B
and -DR incompatibility. The donor-recipient HLA typings were: A*01, *02; B*07, *18; DRB1*01, *04 for the donor, and A*11, *26; B*38, *44; DRB1*13, -, for the recipient. Microbeads array-luminex (One Lambda HD kits, Canoga Park, CA, USA) and CDC techniques showed a PRA level of 0%, which confirmed that the patient, who did not have any previous transplant or pregnancy history, was not sensitized to HLA antigens (Figure, A). Before the transplantation, CDC cross-matching (CM) was negative.

The maintenance immunosuppressive regimen consisted of prednisone (Dacortin; Merck Farma y Quimica, Barcelona, Spain), mycophenolate mofetil (Cellcept, F. Hoffman-La Roche, Basel, Switzerland) and tacrolimus (Prograf; Astellas, Killorglin Co., Kerry, Ireland), as previously published.(5)

On the 15th day of the post-transplantation monitoring period (15th day PTP), we detected de novo anti-HLA class II antibodies (IgG) with Luminex (One Lambda, Canoga Park, CA, USA) (Figure, B). Anti-HLA class I and anti-MICA antibodies screening by luminex was negative. A goat anti-human IgG coupled with phycoerythrin was used for antibody detection. With the luminex analyzer (LabScan), reporter fluorescence intensity of each bead was determined and expressed as mean fluorescence intensity (MFI) which is directly proportional to the amount of antibody bound to the microspheres. MFI\text{max} is defined as the highest MFI level. The cut off value was calculated using negative sera (blood group AB sera from 35 non-transfused healthy males). A mean value and 3 standard deviations were calculated with a cut-off value of 3.0 and allowing an ambiguous area from 2.5 to 3.0, as previously reported.(5)

Additionally, we detected anti-DQB1*03:02 (donor had this allele) antibodies with MFI\text{max} = 5673 and PRA/CRF = 3% (LS2PRA, LabscreenPRA, OL, CA, USA) (Figure, C), and with an apparently normal level of creatinine (\(Cr = 1.0 \text{ mg/dL}\)) and proteinuria (\(Pr = 1.2 \text{ g/24hr}\)). One week later (22th day PTP), the patient had developed significant instability in renal function ([\(Cr = 2.1 \text{ mg/dL}\) and proteinuria (\(Pr = 6.5 \text{ g/24hr}\))], and was highly positive (MFI\text{max} 7986 and PRA/CRF = 37% [single antigen (SA) = 10%]) for anti-DRB1*04 and -DQB1*03:02 (donor typing) (LS2A01, OL, CA, USA) (Figure, D).

Moreover, we performed CM of post-transplantation B-cells and pre- or post-transplant sera, by CDC assay. The results showed that CM was negative for pre-transplant serum, and positive for post-transplant. The CM test was performed as previously published.(3,5) In addition, the sera sample were tested against a panel of B cells from frozen donor spleens (23 donors) by CDC screening, showing negative (PRA = 0%) and positive (PRA = 8.6%-17.4%) results for pre-transplant and post-transplant serum, respectively.

Based on these facts, nephrologists from our hospital indicated a renal biopsy which was positive for C4d deposition (diffuse staining), compatible with humoral allograft rejection.

The patient was pulsed with methylprednisolone (three 500 mg boluses), multiple plasmapheresis (three sessions a day, every 5 days) and IVIG post-session (0.25 g/kg; 1 gr/kg in the last session), from the 22nd day PTP on, without functional improvement. One week later, the MFI\text{max} data was not different to those obtained before the treatment.

Thus, we administered 500 mg anti-CD20 (Rituximab, Roche pharmaceuticals, Basel, Switzerland) intravenously.
AMR Treatment, PRA/CRF/SA and MFI Levels

Boix et al

Two doses of the 36th and 43rd days PTP) and the initial clinical response was highly favorable. Biopsies performed on the 45th day PTP (post-anti-CD20 administration) appeared to show reversion of the humoral rejection \([Cr = 1.4\, \text{mg/dL}}\) and proteinuria \([Pr = 3.2\, \text{g/24hr}}\]). Analysis of the serum on the 45th day PTP revealed that the MFImax of the anti-donor DR4 had fallen to 2021 (PRA/CRF = 34%, SA = 10%) (Figure, E) and seven days later to MFImax = 1176 (PRA/CRF = 34%, SA = 10%) (Figure, F). Despite the outcome of the treatment, all samples in this study showed similar PRA/CRF and SA levels (34-37% and 10%, respectively). Thus, the results suggest that the recognized antigens are always the same, regardless of the antibody concentration in serum.

To date, there has been an improvement in the patient's condition (an increased diuresis), although the renal function improves very slowly \([Cr = 1.4\, \text{mg/dL}}\) and proteinuria \([Pr = 2.7\, \text{g/24hr}}\]). The renal ultrasound scan shows a normal renal graft and the renal gammagraphy shows a good perfusion.

DISCUSSION

Few articles compare the different methods of HLA antibodies screening\(^{1,2}\) for the detection of HLA antibodies. Indeed, current HLA class II matching strategies in kidney transplantation consider only the serologically defined HLA-DR antigens controlled by the DRB1 locus, although mismatching for HLA-DQ and HLA-DP appears associated with lower graft survivals and the development of clinically relevant alloantibodies in transplant recipients.\(^{2,5,6}\) Consequently, HLA-specific antibodies found in post-transplantation patients have been shown to be strongly associated with allograft failure.\(^{6}\) Thus, de novo DSA in serum present at the time of a biopsy increases the probability of microcirculation inflammation and damage lesions, and a subsequent graft loss. Consistent with recent publications,\(^{4,7}\) our data shows that the majority of de novo DSA are usually DSA II.

De novo DSA is associated with microcirculation changes typical of microcirculation inflammation (glomerulitis, peritubular capillaritis) and deterioration (transplant glomerulopathy, mesangial matrix increase, peritubular capillary basement membrane multilayering) and with diffuse C4d staining.\(^{7}\) Accordingly, our patient presented C4d diffuse staining.

In heart transplant patients, a similar predominance of DSA II and an association with cardiac allograft vasculopathy and decreased graft survival can be observed,\(^{8}\) as well as an increased risk of rejection and coronary artery disease.\(^{9}\) Similarly, anti-class II DSA are associated with bronchiolitis obliterans syndrome in lung transplantation.\(^{10}\)

With respect to our case, all samples showed a very similar luminex PRA/CRF level (34-37%), regardless of the treatment outcome. Only MFI levels showed a correlation with the treatment evolution and were predictive of the clinical outcome of the patient.

Thus, this case underlines the importance of identifying patients who develop de novo post-transplant antibodies by using very sensitive screening methods, and emphasizes the importance of MFI quantification over of PRA/CRF (still demanded by some clinicians) and SA percentages. In fact, Luminex technology is regarded as the most sensitive and safest method for antibody detection and is preferred over other antibody-detection techniques.\(^{13,7}\)

CONCLUSION

MFI levels, quantified by luminex method, are a better indicator for monitoring the development of humoral rejection than PRA/CRF/SA percentages.

ACKNOWLEDGEMENTS

This work was has been supported in part by Fondo de Investigación Sanitaria (FIS) grants PI11/02686 and PI080446; CIBERehd, funded by the Instituto de Salud Carlos III, Spain; Seneca Foundation grant N°04487/GERM/O6, and CajaMurcia.

CONFLICT OF INTEREST

None declared.

REFERENCES

